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Exact solitary-wave solutions ofx „2… Ginzburg-Landau equations
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A family of exacttemporal solitary-wave solutions~dissipative solitons! to the equations governing second-
harmonic generation in quadratically nonlinear optical waveguides, in the presence of linear bandwidth-limited
gain at the fundamental harmonic and linear loss at the second harmonic, is found, and the existence domain
for the solutions is delineated. Direct numerical simulations of the solitons demonstrate that, as well as the
classical pulse solutions to the cubic Ginzburg-Landau equation, the dissipative solitons can propagate robustly
over a considerable distance before the model’s intrinsic instability leads to onset of ‘‘turbulence.’’ Two-
soliton bound states are also predicted and then found in the direct simulations. We estimate real values of the
physical parameters necessary for the existence of the solitons predicted, and conclude that they can be
observed experimentally. A promising application for the solitons is their use in closed-loop cavities.
@S1063-651X~99!07306-7#

PACS number~s!: 42.81.Dp, 42.65.Ky, 52.35.Sb, 41.20.Jb
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I. INTRODUCTION

Much attention has been recently focused on solitons
optical media with the quadratic (x (2)) nonlinearity, that are
supported by the cascading mechanism@1#. Experimental ob-
servations of the solitons in the spatial@2# and, very recently,
temporal@3# domains were reported. The media in which t
solitons exist always have internal losses, which should
compensated by gain. In particular, adiabatic amplification
the spatial solitons was recently analyzed numerically in@4#.
However, for the spatial solitons the losses are insignific
in many cases, as the size of the experimental samp
always much smaller than the damping length@2#. Neverthe-
less, the losses and the gain may be important for temp
solitons circulating in a cavity, where the loss and gain
fects will be accumulated as a result of many round trips

Very recently, temporal solitons in ax (2) medium have
been experimentally observed for the first time@3#. The soli-
tons were extremely narrow~their temporal width was 58 fs!,
which allowed to observe them in a small sample~7 mm
long! of thex (2) optical crystal~the so-called BBO!. The use
of those solitons in applications, such as all-optical switch
and others, would require to place the crystal into a cav
~e.g., a ring resonator!. For so temporally narrow soliton
circulating in the cavity, thefiltering losses will be especially
important. Thus, both the losses and amplification must
taken into consideration.

The action of pure losses on thex (2) solitons was consid-
ered in some works~see, e.g.,@5#!. The objective of this
work is to introduce ax (2) model including the lossesand
compensating gain, i.e., essentially,x (2) Ginzburg-Landau
equations, and to find theirexact solitonlike solutions. In
fact, these solutions combine two classical solitary-pulse
lutions: the Karamzin-Sukhorukov soliton in the losslessx (2)

medium@6#, and the Pereira-Stenflo@7# ~see also@8#! dissi-
pative soliton in the cubic complex Ginzburg-Land
~CCGL! equation. The model is introduced, and its spec
exact soliton solutions are obtained, in Sec. II. Obviously
PRE 591063-651X/99/59~6!/7173~5!/$15.00
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crucially important issue is the stability of these soliton
Results of the direct numerical simulations of the soliton
stability are collected in Sec. III. We arrive at a conclusi
that the solitons are subject to the obvious background in
bility, which is a common feature of the Ginzburg-Landa
equations including the linear gain term, but, neverthele
they are meaningful objects, as they can robustly propag
over ;10 soliton’s dispersion lengths, which is quite suf
cient for their formation and observation. Additionally,
Sec. III we display two-soliton bound states, which can
easily predicted and found in the simulations. In the sa
section, we also give estimates for the necessary value
the physical parameters~such as the size of the crysta
sample and the gain strength and bandwidth!, referring to
experimental data reported in@3#. The results of the work are
briefly summarized in Sec. IV.

II. MODEL AND EXACT SOLITON SOLUTIONS

Because the model must include two equations, one
the fundamental harmonic~FH! and the other for the secon
harmonic~SH!, it is necessary to understand at what pla
the losses and amplification should be included. As for
losses, it is very natural to assume that the losses at SH
dominating, while those at FH are negligible~note that the
most fundamental contribution to the losses, the Rayle
scattering, has its intensity growing with the frequencyv as
v4). On the other hand, the amplifier should operate at F
as, otherwise, the amplification will not be efficient~in real
solitons, the SH component is always weaker than the
one, and it is natural to apply the gain to the stronger co
ponent!. So, we will adopt a model combining losses at S
and bandwidth-limited gain at FH.

The solitons that we will find~as well as the well-known
CCGL dissipative solitons! are subject to the usual back
ground instability, which is an inherent feature of the mod
containing linear gain; however, it will be shown that th
solitons can travel a reasonably long distance~several their
7173 ©1999 The American Physical Society
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own dispersion lengths! before the onset of the instability
Moreover, the instability may be immaterial in a real phy
cal situation, provided that the propagation distance ne
sary for the instability onset is larger than the actual size
the system. The latter circumstance is especially impor
for the closed-loop cavities: if the length of the instabilit
generating part of the loop is not too long,stablemultisoliton
patterns are possible in it, with regard to the periodic bou
ary conditions in the propagation coordinateZ @9#.

Our model is based on the propagation equations for
FH and SH waves with the local amplitudesA andB:

iAZ1 icAT2~1/2!DATT1A* B5 ig0A1 ig1ATT ,

iBZ2~1/2!sDBTT2bB12A2

52 iG0B1 iG1/2BT1 iG1BTT , ~1!

whereT andD are, as usual, the reduced time and chroma
dispersion coefficient,s is the relative SH dispersion coef-
ficient, b and c are the phase- and group-velocity mi
matches,g0 is the FH gain coefficient,g1 accounts for the
finite size of the gain band (g1 can be enhanced, if nece
sary, by means of inserted optical filters!, while G0 , G1/2,
andG1 control the losses at SH. The FH equation in syst
~1! implies that the carrier frequency is chosen as tha
which the gain has a maximum~that is why an extra term
ig1/2AT , similar to the oneiG1/2BT in the SH equation, is
absent; as for the coefficientG1/2, it vanishes only in the
special case when the SH losses have a minimum at
frequency which is exactly twice that at which the FH ga
has its maximum!. The group-velocity mismatchc can be
eliminated by an obvious transformation in the conserva
version of the model, but not in the one including the los
and gain. The parametersD, s, c, b, andG1/2 may have any
sign, while all the other parameters on the right-hand side
the equations are positive (G0 may, also, be zero; see below!.

The model~1! is too complicated to seek for its exa
solitary-wave solutions. However, we note that the gro
velocity mismatch is negligible ifucu!uDu(Dv)2, Dv being
the spectral width of the pulse to be dealt with. As it will b
seen below, the real temporalx (2) solitons@3# have a fairly
large bandwidth,Dv;10 THz, and propagate at a stron
anomalous FH dispersion,D;21 ps2/m, which gives rise
to uDu(Dv)2;10211 s/m. Consequently, any group-veloci
difference essentially smaller than;500 km/s is negligible,
and, in view of this, we setc50 in what follows below.
Also, due to the large valueDv;10 THz, we may take
G1/250, as the slopeG1/2 of the SH losses may be neglecte
if the shift of the SH carrier frequency from the minimum
loss point is much smaller thanDv. Lastly, using the obvi-
ous scale invariance of the equations, we setD[21 ~assum-
ing anomalous dispersion at FH, which is the case in the
situation@3#!, andg0[1. Thus, we will deal with a simpli-
fied version of the underlying model~1!,

iAZ1~1/2!ATT1A* B5 iA1 ig1ATT ,
~2!

iBZ1~1/2!sBTT2bB12A252 iG0B1 iG1BTT .

Following the works@6# and @7#, we look for solitary-
pulse solutions to Eqs.~2! in the form
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A5a@sech~lT!#21 imeikZ,
~3!

B5b@sech~lT!#212ime2ikZ,

wherea and b are the FH and SH amplitudes,l is the in-
verse width of the pulse,m is its chirp, and k is the FH
wavenumber. The latter three parameters are always
while the amplitudesa andb may be complex. However,a
can be made real by means of a trivial phase shift, there
the only complex unknown isb.

Substituting the above ansatz into Eqs.~1!, we arrive at an
overdetermined system of four complex equations for
four real and one complex unknowns,l, m, k, a, and b.
Obviously, a solution may be possible if two constraints a
imposed on the five real parameterss, b, g1, and G0,1 of
model ~2!. This still leaves us with three free paramete
leading to a very involved analysis.

In order to present the results in a clearer form, we w
first dwell on the particular caseG050, implying exact com-
pensation of the SH loss at its minimum, which is quite ea
to realize physically. In this case, we obtain, from the abo
mentioned equations~not displayed here!, two values ofm,

m65~1/2!~2a6Aa214!, ~4!

wherea[s/G1. For either value ofm, we find the corre-
sponding values ofl, k, a, and b. Additionally, in accord
with what was said above, we need to impose two constra
on the model’s parameters, which we choose in a form t
determinesg1 andb as functions of the remaining free pa
rameters,s and G1. Defining t1[90m230m3 and t2[36
280m214m4, we can cast the results into the form

l5~24g112m1g1m2!21/2, k5
1

2
l2~418g1m2m2!,

FIG. 1. Existence domain of the solitary-pulse solutions in
particular caseG050. In the regions labeled 1, 2, and 3, there exi
respectively, two solutions corresponding tom6 in Eq. ~4!, the
single solution corresponding tom1 , and the single solution corre
sponding tom2 .
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b5l2S 1

2
2 ig1D ~21 im!~31 im!,

~5!

a5~l/2!A~s22G1!~212im!~312im!b,

g15
1

2

at122t2

2t11at2
, b522k12G1l2~a14m2am2!.

~6!

The parametric constraints~6! secure the reality of the
expression under the square root in the solution~5! for a.
Additionally, it is necessary to have this expression, as w
as that under the square root forl, positive, as botha andl
must be real. This gives rise to inequalities

24g112m1g1m2.0, t1~G11sg1!.0, ~7!

FIG. 2. Existence curves for the exact solitary pulse in the c
G051. Shown is the solution with the positive rootm1 in Eq. ~8!.
ll

which determine the existence domain of theexactsolutions
in the plane of the remaining free parameters (s,G1). The
domain is shown in Fig. 1.

To present the results atG0Þ0, we chooseG051. In this
case, the expression form is more cumbersome than Eq.~4!:

m65
2~2s11!6A~2s11!214~4G11g1!~G11g1!

~4G11g1!
.

~8!

Using the same notation as above, we can cast the solu
into the form ~5! which is supplemented by the parametr
constraints,

b522k12l2~s14mG12sm2!,
~9!

~s/42G1g1!t12~G11sg1!t2/250,

and by the inequalities~7!.
The second relation in Eq.~9! allows us to choose two

free parameters out ofs, G1, and g1. Fixing s, we thus
represent the constraint in the formg15g1(G1). Adding
then the inequalities~7!, we can completely determine th
existence domain. Figure 2 shows the curvesg1(G1) on
which the solution exists for some representative values
s. The values520.5 is a critical one, at which the shape
the curves changes.

III. NUMERICAL SIMULATIONS OF THE SOLITONS’
STABILITY AND THE ESTIMATE OF THE

PHYSICAL PARAMETERS

We have numerically checked the stability of the exa
solitary pulses found in the analytical form in the precedi
section. Simulating the full system of Eqs.~2!, we have seen
~as one should expect! that they finally develop the back
ground instability, but only after a considerable propagat
distance, see a typical example in Fig. 3. In the case sh
in Fig. 3, for instance, the robust stage of propagation
tends to'10 dispersion lengths, which is quite sufficient f
experimental observation of the pulses.

To estimate the values of the physical parameters co
sponding to the situation displayed in Fig. 3, we take
values of the dispersion at which the temporalx (2) soliton
was observed in Ref.@3#, which is D;21 ps2/m, and the
temporal width of the soliton, 58 fs, from the same wor
yielding the dispersion lengthzD;3 mm~note that this com-

e

f
rs:
FIG. 3. Numerically simulated propagation o
the solitary pulse at the values of the paramete
g051, g150.06044, G050, G150.25, s51,
and b527.26296. In this case we havea
59.87120,l52.06834, andm150.23607. Only
the evolution ofuAu is shown here.
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FIG. 4. Same as in Fig. 3 for the values of th
parametersg051, g150.10824, G051, G1

50.8, s50, andb50.81291. In this case, the
solution hasa52.833 78,l50.908 69, andm1

50.788 38.
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plies with the length 7 mm of the sample used in the exp
ment!. The values of the dimensionless parameters give
the caption to Fig. 3 then imply that the necessary gain

g0;~4zD!21;0.1 mm21, ~10!

and the filtering strength is

g1;50 ps2/km, G1;250 ps2/km ~11!

for FH and SH, respectively.
In a real experiment, two different setups are possible~i!

a lumped one, in which thex (2) crystal, the amplifier, and
the filters~if they are necessary! are separately included int
the closed-loop cavity, and~ii ! an integrated setup, in whic
the x (2) crystal is doped by resonant atoms and optica
pumped by an external source, so that the crystal is, sim
taneously, the distributed amplifier. Then, the integrated u
is inserted into the cavity. Model~2! qualitatively correctly
describes the setups of both types, but the above exact
tions directly apply only to the integrated setup. An ad
tional advantage of the latter case is that the resonant do
also provides for enhanced dispersion at FH, which wo
allow one to use optical pulses that are not so narrow.

In the integrated setup, the value~10! of the gain, al-
though being high (;500 times the gain in the usua
Erbium-doped fiber amplifier@10#, that, however, operates a
a different wavelength!, is quite achievable~the minimum
possible length of the active region providing for the nec
sary amplification is;0.2 mm, which is much smaller tha
the relevant lengths!. Note that, in the integrated scheme,
added filters are present, but filtering is provided by the na
ral gain bandwidthV. The characteristic values~10! and~11!
yield an estimateV;10 THz. This value of the bandwidth i
not something impossible, as, e.g., the above-mentio
Erbium-doped amplifiers have the bandwidth of the sa
order of magnitude@10#. It is relevant to stress that the 58
fs-wide soliton generated in the work@3# has its bandwidth
Dv also;10 THz, so that the necessary values prove to
self-consistent.

Last, the size of the crystal sample large enough to
serve the solitons but not too large, so that to prevent
onset of the background instability, is, according to t
above numerical results,&10zD , i.e., &30 mm, which is
quite realistic. Such an experimental setup should mak
feasible to observe the predicted solitons experimentally
included into a closed cavity, it may readily provide f
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stable circulation of the soliton, which opens way to vario
practical applications. It is also relevant to stress that a s
pler scheme mentioned above, with the lumpedx (2) crystal,
amplifier, and filters, even though it is not exactly describ
by the above model, may provide for very similar, but easi
to-achieve, physical results.

We have also performed the simulations of Eqs.~2! with
the initial conditions taken as the solitary pulse given by E
~5!, ~8!, and ~9!, corresponding toG0Þ0. Figure 4 demon-
strates, for this case, eventual onset of the instability sim
to that found in the previous case~Fig. 3!, i.e., after the
propagation of the soliton over'10 dispersion lengths.

As is well known, the linear dissipation and gain term
make the soliton’s tails oscillating, which gives rise to tw
soliton and multisoliton bound states~see Ref.@11# and ref-
erences therein!. We have simulated this case too, and inde
observed bound states of two pulses that exist over a fi
propagation distance before the onset of the instability
typical example of the two-soliton bound state is displayed
Fig. 5.

IV. CONCLUSION

In this work, we have proposedx (2) Ginzburg-Landau
equations and found particular exact solitary-pulse soluti
to them. Direct simulations demonstrate that, depending
the parameters, the pulses are robust over a sufficiently
propagation distance before the onset of instability, wh
may allow experimental observation of the pulses, e.g.
cavities, and also has a potential for applications. Bou

FIG. 5. Typical example of a bound state of two pulses. T
parameters are as in Fig. 3.
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states of two pulses were also predicted and found in
simulations. An estimate, using the recently published
perimental data, shows that the values of the physical par
eters necessary for the observation of the predicted so
are quite realistic.

It is relevant to note that the pumped waveguide can
stabilized by linearly coupling it~placing parallel! to an aux-
iliary dissipative waveguide, in combination with the filter
As it was shown in@12# in terms of the cubic Ginzburg
Landau equation, this opens the way to havecompletely
stable localized pulses. The corresponding modification
le
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the present model has indeed produced stable pumpedx (2)

solitons. These results will be presented in detail elsewh
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