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Exact solitary-wave solutions ofx‘? Ginzburg-Landau equations
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A family of exacttemporal solitary-wave solutior{glissipative solitonsto the equations governing second-
harmonic generation in quadratically nonlinear optical waveguides, in the presence of linear bandwidth-limited
gain at the fundamental harmonic and linear loss at the second harmonic, is found, and the existence domain
for the solutions is delineated. Direct numerical simulations of the solitons demonstrate that, as well as the
classical pulse solutions to the cubic Ginzburg-Landau equation, the dissipative solitons can propagate robustly
over a considerable distance before the model’'s intrinsic instability leads to onset of “turbulence.” Two-
soliton bound states are also predicted and then found in the direct simulations. We estimate real values of the
physical parameters necessary for the existence of the solitons predicted, and conclude that they can be
observed experimentally. A promising application for the solitons is their use in closed-loop cavities.
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PACS numbe(s): 42.81.Dp, 42.65.Ky, 52.35.Sb, 41.20.Jb

[. INTRODUCTION crucially important issue is the stability of these solitons.
Results of the direct numerical simulations of the solitons’

Much attention has been recently focused on solitons irstability are collected in Sec. Ill. We arrive at a conclusion
optical media with the quadraticy(?)) nonlinearity, that are that the solitons are subject to the obvious background insta-
supported by the cascading mechanjdin Experimental ob-  bility, which is a common feature of the Ginzburg-Landau
servations of the solitons in the spafid] and, very recently, equations including the linear gain term, but, nevertheless,
temporal[3] domains were reported. The media in which thethey are meaningful objects, as they can robustly propagate
solitons exist always have internal losses, which should bever ~10 soliton’s dispersion lengths, which is quite suffi-
compensated by gain. In particular, adiabatic amplification otient for their formation and observation. Additionally, in
the spatial solitons was recently analyzed numericalfgin ~ Sec. lll we display two-soliton bound states, which can be
However, for the spatial solitons the losses are insignificangasily predicted and found in the simulations. In the same
in many cases, as the size of the experimental sample Bection, we also give estimates for the necessary values of
always much smaller than the damping leni@h Neverthe- the physical parameter&such as the size of the crystal
less, the losses and the gain may be important for temporgample and the gain strength and bandwidteferring to
solitons circulating in a cavity, where the loss and gain ef-experimental data reported|ii]. The results of the work are
fects will be accumulated as a result of many round trips. briefly summarized in Sec. IV.

Very recently, temporal solitons in a® medium have
been experimentally observed for the first tifid¢ The soli-
tons were extremely narroitheir temporal width was 58 fs
which allowed to observe them in a small samplemm Because the model must include two equations, one for
long) of the () optical crystalthe so-called BB@ The use the fundamental harmoni&H) and the other for the second
of those solitons in applications, such as all-optical switchingharmonic(SH), it is necessary to understand at what place
and others, would require to place the crystal into a cavitythe losses and amplification should be included. As for the
(e.g., a ring resonatpr For so temporally narrow solitons losses, it is very natural to assume that the losses at SH are
circulating in the cavity, théiltering losses will be especially dominating, while those at FH are negligibleote that the
important. Thus, both the losses and amplification must benost fundamental contribution to the losses, the Rayleigh
taken into consideration. scattering, has its intensity growing with the frequercys

The action of pure losses on thé) solitons was consid-  ®*). On the other hand, the amplifier should operate at FH,
ered in some workgsee, e.g.[5]). The objective of this as, otherwise, the amplification will not be efficigin real
work is to introduce ax?> model including the losseand  solitons, the SH component is always weaker than the FH
compensating gain, i.e., essentialy{?) Ginzburg-Landau one, and it is natural to apply the gain to the stronger com-
equations and to find theirexact solitonlike solutions. In ponenj. So, we will adopt a model combining losses at SH
fact, these solutions combine two classical solitary-pulse soand bandwidth-limited gain at FH.
lutions: the Karamzin-Sukhorukov soliton in the losslgs3 The solitons that we will findas well as the well-known
medium[6], and the Pereira-Stenf[@] (see alsd8]) dissi- CCGL dissipative solitonsare subject to the usual back-
pative soliton in the cubic complex Ginzburg-Landauground instability, which is an inherent feature of the model
(CCGL equation. The model is introduced, and its specialcontaining linear gain; however, it will be shown that the
exact soliton solutions are obtained, in Sec. Il. Obviously, asolitons can travel a reasonably long distaeeveral their

II. MODEL AND EXACT SOLITON SOLUTIONS
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own dispersion lengthsbefore the onset of the instability. A=a[sechi\T)]? " relkZ,
Moreover, the instability may be immaterial in a real physi- 3)
cal situation, provided that the propagation distance neces- B=b[sechi\T)]?*2»e?kZ,

sary for the instability onset is larger than the actual size of
the system. The latter circumstance is especially important , ) .
for the closed-loop cavities: if the length of the instability- Wherea andb are the FH and SH amplitudes, is the in-

generating part of the loop is not too lorsgablemultisoliton ~ Verse width of the pulsey is its chirp, andk is the FH
patterns are possible in it, with regard to the periodic boundWavenumber. The latter three parameters are always real,

ary conditions in the propagation coordinat¢9]. while the amplitudes andb may be complex. Howeven

Our model is based on the propagation equations for th&a" be made real by means of a trivial phase shift, therefore
FH and SH waves with the local amplitudésand B: the only complex unknown is. ,
Substituting the above ansatz into E(, we arrive at an

iAs+icAr— (12 DA+ A*B=ivy,A+iy,ArT, overdetermined system of four complex equations for the

four real and one complex unknowns, w, k, a, andb.
iB,—(1/2)0DBy1— BB+ 2A2? Obviously, a solution may be possible if two constraints are

) ) ] imposed on the five real parameters 8, vy;, andI'g; of
=—iloB+il'yBr+il'1Brr, (1) model (2). This still leaves us with three free parameters,

hereT andD | the reduced i dch _ leading to a very involved analysis.
whereT andD are, as usual, the reduced time and chromatic- |, 5rqer to present the results in a clearer form, we will

djspersion coefficienty is therelative SH dispersioni coef? first dwell on the particular cadg, =0, implying exact com-
ficient, 5 and ¢ are the phase- and group-veloCity mis- hansation of the SH loss at its minimum, which is quite easy
matches,y, is the FH gain coefficienty; accounts for the 5 regjize physically. In this case, we obtain, from the above-

finite size of the gain bandy; can be enhanced, if neces- yantioned equationgot displayed heje two values ofu,
sary, by means of inserted optical filtgrsvhile I'g, T"y,

andI’; control the losses at SH. The FH equation in system
(1) implies that the carrier frequency is chosen as that at pa=(U2)(~axa’+4), (4)
which the gain has a maximuihat is why an extra term

i y,,A7, similar to the one';,B in the SH equation, is where.azall“l. For either value ofu, we find t_he corre-
absent; as for the coefficiefit,;,, it vanishes only in the sponding values ok, k, a, andb. Additionally, in accord
Specia' case When the SH |osses have a minimum at th\@":h What was Said above, we need to impose two COHStl’aintS
frequency which is exactly twice that at which the FH gain©n the model's parameters, which we choose in a form that
has its maximum The group-velocity mismatcis can be determinesy; and 8 as functions of the remaining free pa-
eliminated by an obvious transformation in the conservativéameters,o- and I'y. Defining t;=90u—30u> and t,=36
version of the model, but not in the one including the losses~ 80u”+4u*, we can cast the results into the form

and gain. The parametelBs o, ¢, 8, andI';,, may have any

sign, while all the other parameters on the right-hand sides of o1/ 1, )

the equations are positivé § may, also, be zero; see belpw M= (—4y1+2u+y1u%) 75 k= SN (4+8yiu—p),

The model(1) is too complicated to seek for its exact
solitary-wave solutions. However, we note that the group- 40 —
velocity mismatch is negligible ifc|<|D|(Aw)?, Aw being
the spectral width of the pulse to be dealt with. As it will be
seen below, the real temporgi? solitons[3] have a fairly
large bandwidthAw~10 THz, and propagate at a strong
anomalous FH dispersiom~ —1 p$/m, which gives rise e
to |D|(Aw)2~10 1! s/m. Consequently, any group-velocity _ 2
difference essentially smaller than500 km/s is negligible, -
and, in view of this, we set=0 in what follows below. T,
Also, due to the large valuA w~10 THz, we may take ©° 0 1
I'»=0, as the slopé&’,/, of the SH losses may be neglected 4 8
if the shift of the SH carrier frequency from the minimum- n \\
loss point is much smaller thahw. Lastly, using the obvi- R
ous scale invariance of the equations, welsst— 1 (assum- 20 —
ing anomalous dispersion at FH, which is the case in the rea
situation[3]), and yo=1. Thus, we will deal with a simpli- _
fied version of the underlying modél),

iAz+ (112 A1+ A* B=iA+iyArr, 40 —
2 FIG. 1. Existence domain of the solitary-pulse solutions in the
iBz+(1/2)0Brr— B+ 2A%=—iT(B+il'1Brr. particular cas&',=0. In the regions labeled 1, 2, and 3, there exist,

respectively, two solutions corresponding go. in Eq. (4), the
Following the works[6] and [7], we look for solitary-  single solution corresponding o, , and the single solution corre-
pulse solutions to Eqg2) in the form sponding tou _ .
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121 ) ) which determine the existence domain of thectsolutions
in the plane of the remaining free parametessI{,). The
domain is shown in Fig. 1.

c=-055 To present the results A+ 0, we choosd’o=1. In this
case, the expression faris more cumbersome than Ed):

c=-05
= (20+1)*\(20+1)*+4(A0 1+ ) (T 1+ 1)
- (4T 1+ 1) '
05 10 8
Iy Iy Using the same notation as above, we can cast the solution
into the form(5) which is supplemented by the parametric
039 c=- 04 021 () constraints,

o= 02

B=—2k+2\*(o+4ul’1—ou?),

9
(o/4=T1y)ty— (T + 0 y)t/2=0,

and by the inequalitieé?).

The second relation in Eq9) allows us to choose two
free parameters out of, I'y, and y4. Fixing o, we thus
represent the constraint in the form = vy,(I";). Adding
then the inequalitie7), we can completely determine the
) _ _ existence domain. Figure 2 shows the curwegl';) on
FIG. 2. Existence curves for the exact solitary pulse in the casgyhich the solution exists for some representative values of
I'o=1. Shown is the solution with the positive roat. in Eq.(8). ;. The valuer=—0.5 is a critical one, at which the shape of
the curves changes.

1 . . lll. NUMERICAL SIMULATIONS OF THE SOLITONS’
—\2| _ _ .
b= (2 by | 2R B i), STABILITY AND THE ESTIMATE OF THE
5) PHYSICAL PARAMETERS
a=(N2)\(e—2T1)(2+2ip)(3+2iu)b, We have numerically checked the stability of the exact

solitary pulses found in the analytical form in the preceding
section. Simulating the full system of Eq&), we have seen
(as one should expecthat they finally develop the back-
ground instability, but only after a considerable propagation
(6) distance, see a typical example in Fig. 3. In the case shown
in Fig. 3, for instance, the robust stage of propagation ex-
tends to~ 10 dispersion lengths, which is quite sufficient for

1 atl— 2t2

e —— — 2 _ 2
2 20, +at,’ B 2k+2I' N (a+4u—au’).

Y1

The parametric constraint®) secure the reality of the . :
expression under the square root in the soluiignfor a. experlmeptal observation of the pulses'.
Additionally, it is necessary to have this expression, as well To estimate the_ Va'F‘eS O.f the phy_swa! parameters corre-
as that under the square root oy positive, as botka and\ sponding 1o thg S|tuqt|on dlspl_ayed in Fig. 3, \;ve tgke the
must be real. This gives rise to inequalities values of the d_lspersmn at .Wh'.Ch the tempogét) soliton

was observed in Ref3], which isD~—1 pg/m, and the

temporal width of the soliton, 58 fs, from the same work,
— 4y, +2u+ Yy u?>0, ty(I'y+07y,)>0, (7)  vyielding the dispersion lengtty~3 mm (note that this com-

Aroghtude Fa

FIG. 3. Numerically simulated propagation of
the solitary pulse at the values of the parameters:
vo=1, y,=0.06044,,=0, I';=0.25, o=1,
and B=—7.26296. In this case we hava
=09.87120,\=2.06834, angx, =0.23607. Only
the evolution of|A| is shown here.
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FIG. 4. Same as in Fig. 3 for the values of the
parameters yo=1, v,=0.10824, I'y=1, I';
P ; ‘ / ‘ VoL =0.8, 0=0, and 3=0.81291. In this case, the
TN T SN T \ L N solution hasa=2.83378,\=0.908 69, andu .,
\‘ AR NN N R P =0.78838.

RArogitude TR

plies with the length 7 mm of the sample used in the experistable circulation of the soliton, which opens way to various
men). The values of the dimensionless parameters given ipractical applications. It is also relevant to stress that a sim-
the caption to Fig. 3 then imply that the necessary gain is pler scheme mentioned above, with the lumpé®! crystal,
. . amplifier, and filters, even though it is not exactly described
Yo~ (4zp) "~0.1 mm -, (10 py the above model, may provide for very similar, but easier-
to-achieve, physical results.

and the filtering strength is We have also performed the simulations of E@.with

y,~50p@/km, T;~250 p&/km (12) the initial conditions taken as the solitary pulse given by Egs.
! ’ ! (5), (8), and(9), corresponding td"(# 0. Figure 4 demon-
for FH and SH, respectively. strates, for this case, eventual onset of the instability similar

In a real experiment, two different setups are possifi)e: to that found in the previous cas€ig. 3), i.e., after the
a lumped one, in which thg(® crystal, the amplifier, and Propagation of the soliton over 10 dispersion lengths.
the filters(if they are necessanare separately included into  As is well known, the linear dissipation and gain terms
the closed-loop cavity, andi) an integrated setup, in which make the soliton’s tails oscillating, which gives rise to two-
the x® crystal is doped by resonant atoms and opticallysoliton and multisoliton bound stat¢see Ref[11] and ref-
pumped by an external source, so that the crystal is, simuErences therejnWe have simulated this case too, and indeed
taneously, the distributed amplifier. Then, the integrated unibserved bound states of two pulses that exist over a finite
is inserted into the cavity. ModéPR) qualitatively correctly ~ Propagation distance before the onset of the instability. A
describes the setups of both types, but the above exact soltypical example of the two-soliton bound state is displayed in
tions directly apply only to the integrated setup. An addi-Fig. 5.
tional advantage of the latter case is that the resonant dopant
also provides for enhanced dispersion at FH, which would
allow one to use optical pulses that are not so nharrow.

In the integrated setup, the val§&0) of the gain, al- In this work, we have proposeg® Ginzburg-Landau
though being high €500 times the gain in the usual equations and found particular exact solitary-pulse solutions
Erbium-doped fiber amplifigrl0], that, however, operates at to them. Direct simulations demonstrate that, depending on
a different wavelength is quite achievabléthe minimum the parameters, the pulses are robust over a sufficiently long
possible length of the active region providing for the necespropagation distance before the onset of instability, which
sary amplification is~0.2 mm, which is much smaller than may allow experimental observation of the pulses, e.g., in
the relevant lengthsNote that, in the integrated scheme, no cavities, and also has a potential for applications. Bound
added filters are present, but filtering is provided by the natu-
ral gain bandwidti(). The characteristic valu¢40) and(11)
yield an estimat&€)~10 THz. This value of the bandwidth is
not something impossible, as, e.g., the above-mentioned
Erbium-doped amplifiers have the bandwidth of the same :
order of magnitud¢10]. It is relevant to stress that the 58-
fs-wide soliton generated in the wofB] has its bandwidth
Aw also~10 THz, so that the necessary values prove to be
self-consistent.

Last, the size of the crystal sample large enough to ob-
serve the solitons but not too large, so that to prevent the
onset of the background instability, is, according to the
above numerical resultss10zp, i.e., =30 mm, which is
quite realistic. Such an experimental setup should make it
feasible to observe the predicted solitons experimentally. If FIG. 5. Typical example of a bound state of two pulses. The
included into a closed cavity, it may readily provide for parameters are as in Fig. 3.

V. CONCLUSION
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states of two pulses were also predicted and found in théhe present model has indeed produced stable pumgffed
simulations. An estimate, using the recently published exsolitons. These results will be presented in detail elsewhere.
perimental data, shows that the values of the physical param-

eters necessary for the observation of the predicted soliton ACKNOWLEDGMENTS

are quite realistic.
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